3D Bioplotter Research Papers

Displaying all papers by H. Leite-Almeida (2 results)

Benefits of Spine Stabilization with Biodegradable Scaffolds in Spinal Cord Injured Rats

Tissue Engineering Part C: Methods 2013 Volume 19, Issue 2, 101-108

Spine stabilization upon spinal cord injury (SCI) is a standard procedure in clinical practice, but rarely employed in experimental models. Moreover, the application of biodegradable biomaterials for this would come as an advantage as it would eliminate the presence of a nondegradable prosthesis within the vertebral bone. Therefore, in the present work, we propose the use of a new biodegradable device specifically developed for spine stabilization in a rat model of SCI. A 3D scaffold based on a blend of starch with polycaprolactone was implanted, replacing delaminated vertebra, in male Wistar rats with a T8-T9 spinal hemisection. The impact of…

Development and Characterization of a Novel Hybrid Tissue Engineering-Based Scaffold for Spinal Cord Injury Repair

Tissue Engineering Part A 2010 Volume: 16 Issue 1, Pages 45-54

Spinal cord injury (SCI) represents a significant health and social problem, and therefore it is vital to develop novel strategies that can specifically target it. In this context, the objective of the present work was to develop a new range of three-dimensional (3D) tubular structures aimed at inducing the regeneration within SCI sites. Up to six different 3D tubular structures were initially developed by rapid prototyping: 3D bioplotting–based on a biodegradable blend of starch. These structures were then further complemented by injecting Gellan Gum, a polysaccharide-based hydrogel, in the central area of structures. The mechanical properties of these structures were…